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Abstract

Temperature distributions in structure with random material properties is investigated. Variational methodology
is proposed for the analysis of heat ¯ow with phase change using the enthalpy of the system. The solution
procedure for phase change e�ect is discussed. A system of partial di�erential equations is obtained and solved for

the ®rst two probabilistic moments of the random temperature ®eld. The ®nite element equations are derived. 7 2000
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The numerical methods, especially the ®nite el-
ements, are widely used and its application in thermal

analysis is universally accepted. The analysis of ther-
mal problems subjected to external loads is developed
under the assumption that the structure's parameters
are deterministic quantities. For a signi®cant number

of circumstances, this assumption is not valid, and the
probabilistic aspects of the thermal problem need to be
taken into account. The literature on the probabilistic

methods in mechanics is considerable (see Refs. [1,2],
for instance). In this paper, we apply the ®nite element
method with a probabilistic context called stochastic

®nite element method (see Refs. [3±6], for instance).
This broad de®nition includes the ®rst- and second-
order moment methods. The main advantage of this
non-statistical methodology is that only the ®rst two

probabilistic moments of random parameters (i.e.
spatial expectations and cross-covariances or cross-cor-
relation functions) are required on input, while in the

statistical approach the whole probabilistic structure

(probability density or probability distribution func-

tions) and a large number of samples generated ran-

domly are needed. In the paper a variational

methodology is proposed for nonlinear transient heat

transfer systems with phase change with random par-

ameters de®ned by their ®rst two probabilistic

moments. The basic di�culty in the ®nite element

modeling of heat transfer problems with phase changes

lies in a temperature solution with discontinuous tem-

perature gradients at the phase transition surface. A

method that can directly be employed in conventional

®nite element computer programs is the procedure pro-

posed by Morgan et al. [11] and Comini et al. [10].

However, this technique must be used with care,

because for a given phase change temperature interval

the time step used must be small enough that the

change in temperature during one time step, in a

region undergoing a change of phase, is less than

phase change temperature interval. In this study we

use a procedure to phase change problems proposed

by Rolph and Bathe [14]. This procedure is relatively

simple and restrictions on the time step size and mesh

con®gurations are greatly reduced and no special con-
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ditions on the phase change temperature interval need
be satis®ed.

2. Heat ¯ow equation

The governing equation of heat transfer in a ther-
mally anisotropic 3D region O can be written in a

di�erential form as follows �i, j � 1, 2, 3)

ÿ
kijT,j

�
,j
�Q � @H

@t
�x, t� 2 O� t �1�

with the boundary conditions imposed on the bound-

ary surface temperature

T � T̂ �x, t� 2 @OT � t �2�

and the boundary surface heat ¯ux

ÿkijnjT,i � q̂ �x, t� 2 @Oq � t �3�

and the initial condition imposed on the initial tem-
perature distribution

T0 � T̂0 �x, t� 2 O� f0g �4�

where

T is the temperature

kij is the thermal conductivity tensor
Q is the rate of heat generated per unit volume
H is the enthalpy

x is the position vector which identi®es materials
particles in the domain O

t denotes the time domain

T̂ is the temperature acting on the boundary surface
@OT

q̂ is the heat ¯ux on the complementary boundary

surface @Oq

ni is the unit outward-drawn vector normal to @O
T̂0 is the initial temperature

and for any function g, the notation g,i stands for the

partial di�erentiation of g with respect to the spatial
coordinate xi:
The Fourier's constitutive relation reads

qi � ÿkijT,j �5�

qi being the heat ¯ux vector

Eq. (3) may be speci®ed to include convection
boundary conditions on a part @Oq�1� of @Oq

ÿkijnjT,i � x�c��Tÿ T1� �x, t� 2 @Oq�1� � t �6�

where x�c� is convection coe�cient, and radiation
boundary conditions on a part @Oq�2� of @Oq

ÿkijnjT,i � x�r�
ÿ
T n ÿ T n

�r �
� � w

ÿ
Tÿ T�r �

� �7�

in which the coe�cient x�r� is computed as

x�r � � sV
�
1

E
� 1

E�r�
ÿ 1

�ÿ1
�8�

and

w � x�r �
�
T 2 � T 2

�r�
�ÿ
T� T�r �

� �9�

where s is the Stefan±Boltzmann constant, T�r� is the
temperature of known external radiation source, V is

Nomenclature

T temperature
Kij thermal conductivity tensor
Q rate of heat generated per unit volume

H enthalpy
x position vector
t time

T̂ boundary temperature
q̂ boundary heat ¯ux
ni unit outward

T̂0 initial temperature
qi heat ¯ux vector
x�c� convection coe�cient
x�r� radiation coe�cient

s Stefan±Boltzmann constant
T�r� temperature of external radiation source
V radiation view factor

E surface emissivity
E�r� emissivity of the radiation source
c speci®c heat of material

r density of material
L Latent heat
Ts solidus temperature

Tl liquidus temperature
Z Heaviside function
DTf phase change interval

Tf phase change temperature �Tf � Ts�
b � br random variable vector
b0
r spatial expectation of br�x i �

T nodal temperature vector

K heat conductivity matrix
C speci®c heat matrix
Q thermal load vector
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the radiation view factor, E is the surface emissivity,
and E�r� the emissivity of the radiation source.

Looking for an approximate temperature solution to
the above initial-boundary value problem we usually
form the residuals

r1 � ÿ
ÿ
kijT,j

�
i
ÿQ� @H

@t
�10�

r2 � q̂� kijnjT,i �11�

and then solve the problems (1)±(4) by determining the
square integrable temperature ®eld T satisfying the

temperature boundary condition and zeroing the fol-
lowing weighted residual

R �
�
O
r1f dO�

�
@Oq

r2f d�@O� � 0 �12�

for all square integrable weighting functions f�x� that
vanish on @OT: The residual (12) can be transformed

as follows

R �
�
O

�
ÿ ÿkijT,j

�
i
f�

�
@H

@t
ÿQ

�
f

�
dO

�
�
@Oq

ÿ
q̂� kijnjT,j

�
f d�@O�

� ÿ
�
@Oq

kijnjT,if d�@O� �
�
O

�
kijT,jf,i

�
�
@H

@t
ÿQ

�
f

�
dO�

�
@Oq

ÿ
q̂� kijnjT,i

�
f d�@O�

�
�
O

�
kijT,jf,i �

�
@H

@t
ÿQ

�
f

�
dO

�
�
@Oq

q̂f d�@O� � 0

�13�

The derivative of H with respect to time t is given as

@H

@t
�
�

~c� s
@L

@T

�
@T

@t
�14�

where ~c � c � r, c is the speci®c heat of material, r is

the density of material, L is the latent heat, and

s �
�
1 for T 2 �Ts, Tl �
0 for T 2 Rÿ �Ts, Tl � �15�

where Ts is the solidus temperature and Tl is the liqui-
dus temperature.
By Eq. (14) we have

@H

@t
� ~c

@T

@t
� s

@L

@T

@T

@t
�
�

~c� s
@L

@T

�
@T

@t
�16�

We can also rewrite the above equation in the alterna-
tive manner which is applicable in the paper of Mor-
gan et al.

@H

@t
�
�

~c�
�
Z�Tÿ Ts � ÿ Z�Tÿ Tl �

�
L

DT

�
@T

@t
�17�

where Z denotes the Heaviside function

Z�tÿ a� �
�
1 �t > a�
0 �tRa� �18�

and DT � Tl ÿ Ts is the phase change interval.
We rewrite Eq. (17) as

@H

@t
�
ÿ
~c� ŜL

�@T
@t

�19�

where

Ŝ � Ŝ�T, Ts, Tl � �
�
Z�Tÿ Ts � ÿ Z�Tÿ Tl �

�
DT

�20�

The residual R in Eq. (13) takes the form

R �
�
O

�
kijT,jf,i �

�ÿ
~c� sL,T

�@T
@t
ÿQ

�
f

�
dO

�
�
@Oq

q̂f d�@O� � 0

�21�

At any given time instant t, Eq. (21) is clearly non-
linear in T. To solve the equation for T we may use
the iterative technique of Newton±Raphson which is

based on zeroing the `next' kth residual written as

R�k� � R�kÿ1� � R
�kÿ1�
T � dT �k� � 0 �22�

in which R�kÿ1� � R�kÿ1��T�x, t,�, x, t,� corresponds to
the `last' �kÿ 1)th approximation to the temperature

®eld T � T �kÿ1� assumed known, dT �k� is the iterative
correction to be determined from Eq. (22) such that

T �k� � T �kÿ1� � dT �k� �23�
and R

�kÿ1�
T � dR�kÿ1�=dT is the �kÿ 1)th tangent oper-

ator de®ned by

RT �
�
O

"
@kij
@T

T,jf,i � kijf,i

@

@x j
� f

 
~c
@

@t

� @ ~c

@T

@T

@t
� s

@ 2L

@T 2
ÿ @Q

@T,i

@

@x i

!#
dO

�
�
@Oq

f
@ q̂

@T
d�@O� �24�
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The notation RT � dT should be clear from the context
with � indicating that dT multiplies the appropriate

integrand rather than the whole integrand expression
that de®nes RT: The operator RT depends nonlinearly
on T, linearly on f and acts linearly on dT; we shall

use the notation

RT

�
T; f

� � dT � R̂T

�
T; f; dT

�
�
�
O

"
@kij
@T

T,jf,idT� kijf,idT,j � f

 
~c
@dT
@t

� @ ~c

@T

@T

@t
@T� s

@ 2L

@T 2
ÿ @Q
@T

dTÿ @Q

@T,i
@T,i

!#
dO

�
�
@Oq

f
@ q̂

@T
dT d�@O� �25�

The iterative procedure can be seen more clearly for a

time-discretized formulation in which we assume that:

(a) solution up to a typical time instant t has been
obtained,

(b) solution Tt�Dt at time t� Dt is looked for,
(c) a ®nite di�erence scheme in time such as the
one-step backward Euler scheme is employed so
that

_Tt�Dt � 1

Dt
�Tt�Dt ÿ Tt � �26�

and consequently

_T
�k�
t�Dt �

1

Dt

�
T �k�t�Dt ÿ Tt

�
,

dT �k� � dT �k�t�Dt � Dtd _T
�k�
t�Dt,

@

@t
dT �k� � @

@t
dT �k�t�Dt �

1

Dt
dT �k�t�Dt �

1

Dt
dT �k�:

Eq. (25) at t � t� Dt becomes

R
�kÿ1�
T

�
T; f

� � dT �k�
�
�
O

"
@k�kÿ1�ij

@T
T �kÿ1�,j f,i � k�kÿ1�ij f,i

@

@x j

� f

 
~ckÿ1

1

Dt
� @ ~ckÿ1

@T

1

Dt

ÿ
T �kÿ1� ÿ Tt

�
� @ 2L

S@T 2
ÿ @Q
@T
ÿ @Q

@T,i

@

@x i

!#
dT �k� dO

�
�
@Oq

f
@ q̂

@T
dT �k� d�@O� �27�

where all the functions (except for Tt!) are under-
stood to be computed at time t� Dt and the tem-

perature value T
�kÿ1�
t�Dt : The operator equation (22)

with the term R�kÿ1�T dT �k� given as Eq. (27) can be

solved for dT �k� by any of the known techniques in
use for solving partial di�erential equations (PDEs)
with respect to space variables. It should be noted

in this context that even though the operator R in
Eq. (21) generates the symmetric ®nite element
`secant' sti�ness matrix (dependent on T ), the

spatial discretization applied to Eq. (22) with (27)
results in a non-symmetric tangent sti�ness matrix
which may unfavorably in¯uence the e�ciency of

the solution procedure typically based on symmetric
linear equations solvers. Therefore, di�erent sym-
metric approximations to the non-symmetric tan-
gent sti�ness are used in practice with the non-

symmetry e�ects accounted for in an iterative
fashion.

3. Formulation of the problem

Let us denote by b � br � �b1, . . . , bR� any random

variable vector. The second-moment-second-order-per-
turbation methodology (see Refs. [5,6,9]) involves
expanding in the power series in all the functions of

the random variables br�x i � included in Eq. (13), i.e.
temperature T�br�, latent heat L�br�, thermal conduc-
tivity kij��br�, T�br��, material density r��br�; T�br��,
speci®c heat capacity c��br�; T�br��, rate of heat gener-

ated per unit volume Q�br� and boundary heat ¯ow
q̂��br�, T�br�� about the spatial expectations of br�x i �,
i.e. about b0r � b0r �x i � and retaining up to the second-

order terms. These expansion are expressed symboli-
cally as

� � � � � � �0�g� � �:rDbr � 1

2
g2� � �:rsDbrDbs �28�

where

gDbr � dbr � g
ÿ
br ÿ b0r

� �29�

is the ®rst variation of br about b
0
r , and

g2DbrDbs � dbrdbs � g2
ÿ
br ÿ b0r

�ÿ
bs ÿ b0s

� �30�

is the mixed variation of br and bs about b0r and b0s
and g is a small parameter. The symbol ���0 denotes

the value of the functions taken at the expectations b0r ,
while ���:r and ���:rs, respectively, represent the ®rst and
second total derivatives with respect to br evaluated at

b0r : The expansion (28) is now substituted into the prin-
ciple (13). By equating the same order terms in the
resulting expression, we obtain the hierarchical PDE
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system for the stochastic version of the transient vir-
tual temperature principle as follows:

Zeroth-order

�
O

�
~c0 � sL0

,T
_T 0f� w0ijT

0
, jf,i

�
dO

�
�
O
fQ0 dO�

�
@Oq

fq̂0 d�@O� �31�

First-order

�
O

�
~c0 � sL0

,T
_T
:r
f� w0ijT

r
, jf,i

�
dO

�
�
O
fQ:r dO�

�
@Oq

fq̂:r d�@O�

ÿ
�
O

hÿ
c:r � sL:r

,T

�
_T 0f� w:rij T

:r
ijf,i

i
dO

�32�

Second order

�
O

�
~c0 � sL0

,T
_T
�2�
f� w0ijT

�2�
,j f,i

�
dO

�
�
O
fQ�2� dO�

�
@Oq

fq̂�2� d�@O�

ÿ
�
O

hÿ
c:rs � sL:rs

,T

�
_T 0 � ÿc:r � sLr

,T

�
_T
:s
i
Srsf dO

ÿ
�
O

�
w:rsij T

0
, j � 2w:rij T

:s
, j

�
Srsf,i dO

�33�

where ����2� denotes the double sum ���:rsS rs, r, s � 1,

2, . . ., R: The ®rst two probabilistic moments for the
random variable ®eld br � �b1, . . . , bR� are de®ned as

E�br � � b0r �
��1
ÿ1

brf�br � dbr �34�

Cov�br, bs � � Srs �no sum on R�

�
��1
ÿ1

�
br ÿ b0r

��
bs ÿ b0s

�
f �b� db �35�

The de®nition (35)2 corresponds to

Srs � arasb0r b
0
smrs �36�

with

ar �
"

Var�br �ÿ
b0r
�2

#1=2

mrs �
��1
ÿ1

brbs f �b� db �37�

where E �br�, Cov�br, bs�, Var�br�, mrs, ar and f �br� �
f �b1, b2, . . ., bR� are the spatial expectations, covari-

ances, variances, correlation functions, coe�cients of
variation and R-variate probability density function,
respectively.
Having solved the equation system (31)±(33) for the

functions T 0, T :r, T �2� the probabilistic distributions
of the random temperature ®eld T�br�xi �, x i, t� may,
for a given g, be computed from its power expansion

using the de®nition of the ®rst two probabilistic
moments. (Setting g � 0 yields the deterministic sol-
ution.) The solution can be obtained by setting g � 1

which, of course, stipulates that the ¯uctuation of the
random ®eld variables br is small. Thus, by substitut-
ing the expanded equation (cf. Eq. (28))

T � T 0 � T :rDbr � 1

2
T :rsDbrDbs �38�

into the de®nition of the ®rst probabilistic moment

E
�
T�x i, t�

� � ��1
ÿ1

T�x i, t� f �b� db �39�

the second-order accurate expectation for the random

temperature ®eld is written as

E
�
T�x i, t�

� � T 0�x i, t� � 1

2
T �2��x i, t� �40�

since (cf. Eqs. (28) and (35))

E
�
T�br �

� � ��1
ÿ1

�
T 0
ÿ
b0r
�� T :s

ÿ
b0r
�
Dbs

� 1

2
T :st

ÿ
b0r
�
DbsDbt

�
f�b� db

� T 0 � 1� T :r � 0� 1

2
T :rsS rs � T 0 � 1

2
T �2� �41�

Clearly, if only the ®rst-order accuracy of the tempera-

ture estimation is required, then Eq. (40) reduces to

E
�
T�x i �

� � T 0�x i � �42�

In the framework of the second-moment-second-order-
perturbation methodology, the cross-covariances can

be estimated with only the ®rst-order accuracy. Intro-
ducing the second-order expansion of the random tem-
perature ®eld into the de®nition
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Cov
ÿ
T 1, T 2

�
�
��1
ÿ1

�
T 1 ÿ E�T 1 ���T 2 ÿ E�T 2 �� f �b� db �43�

we get the cross-covariances for the random tempera-
tures at the spatial coordinates x 1

i , x
2
j at any time

instant t as

Cov
ÿ
T 1, T 2

�
� T 1, r

�
xr, �1�
i , t

�
T 2, r

�
xs�2�
j , t

�
Srs

� T 1, rT 2, rS rs �44�

Eqs. (40) and (44) holds true for both the transient
and the steady heat transfer systems. It is pointed out

that in the above formulations the input random par-
ameters br de®ned by Eq. (34) are random variables in
space, i.e. uncertainties in br are assumed to be time-

independent. Although problems with input data being
random in space as well as in time are beyond the
scope of the current second-moment-second-order-per-
turbation strategy, it turns out that the ®rst two space-

time probabilistic moments for the temperature ®eld
T�brt� can be evaluated.

4. Finite element model

The incremental ®nite element interpolation is
employed

T�br � � HaTa
ÿ
br
� � HT

a � 1, 2, . . . ,N, r � 1, 2, . . . , ~N, r � 1, 2, . . . , R �45�

The power expansions for the functions T, k, ~c, Q�t�
and q̂ about the random variable expectations b0r are
written symbolically as

� � � � � � �0�g� � �:rDb� 1

2
g2� � �:rsDbrDbs �46�

where, as before (cf. Eq. (28))

gDbr � dbr � g
�
br ÿ b0r

�
�47�

is the ®rst variation of br about b0r, and

T�br � � HaTa
ÿ
br
� � HT

g2DbrDbs � dbrdbs � g2
�
br ÿ b0r

�ÿ
bs ÿ b0s

� �48�

is the mixed variation of br and bs about b0r while ���0,
���:r and ���:rs are functions of the zeroth, ®rst and sec-
ond total derivatives with respect to br, respectively;
the functions are evaluated at b0r:

Moreover, we assume

Ŝ�T�br �, Ts�br �, Tl�br �� � Ŝ
ÿ
T 0, T 0

s , T
0
l

� � Ŝ0 �49�

By introducing the ®nite element approximations (45)
and (46) into the zeroth-, ®rst- and second-order vari-
ational statements (31)±(33) and using the arbitrariness

of dT in O, we arrive at the following hierarchical
ordinary di�erential equation system governing the
transient heat transfer process:

Zeroth-order �g0� term

C0 ÇT0 �K0T0 � Q0 �50�

First-order �g1� terms

C0 ÇT
,r �K0 ÇT,r � Q,r ÿ

ÿ
C,r ÇT0 �K,r ÇT0

�
�51�

Second-order �g2� term

C0 ÇT�2� �K0T�2�

�
h
Q,rs ÿ 2

ÿ
C,r ÇT,s �K,rT,s

�
ÿ
ÿ
C,rs ÇT0

�K,rsT0
�i
Srs �52�

b0r � E �br� denotes the expectations of the random
variable vector br, S

rs �Cov�br, bs� is the covariance

matrix for the entries of the vector br, while the vector
of the second-order nodal temperatures is de®ned as

T�2�
ÿ
b0
�
� T,rs

ÿ
b0
�
Srs �53�

The right-hand side of Eq. (54) results from the re-
lationship (cf. Eqs. (34) and (46))

T
�2�
,i � T :rs

,i S
rs � H,iT

:rsSrs � H,iT
�2� �54�

In Eqs. (51)±(53), the zeroth-order heat capacity
matrix C0, heat conductivity matrix K0, right-hand vec-
tor Q0 and ®rst and second derivatives of C, K and Q

with respect to the random variables b are expressed as
follows:

Zeroth-order functions

C0 �
�
O

ÿ
c0 � Ŝ0L0

�
HH dO

K0 �
�
O
k0ijH,iH,j dO
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Q0 �
�
O
Q0H dO�

�
@Oq

q̂0H d�@O� �55�

First derivatives

C,r �
�
O

ÿ
c,r � Ŝ0Lr

�
HH dO

K,r �
�
O
k,rij H,iH,j dO

Q,r �
�
O
Q,rH dO�

�
@Oq

q̂,rH d�@O� �56�

Second derivatives

C,rs �
�
O

ÿ
c,rs � Ŝ0L,rs

�
HH dO

K,rs �
�
O
k,rsij H,iH,j dO

Q,rs �
�
O
Q,rsH dO�

�
@Oq

q̂,rsH d�@O� �57�

All expressions evaluated at the expectations b0:
Recalling the notation

� � �,r� d� � �
db

����
b�b0

� � �,rs� d2� � �
dbrdbs

�����
br�b0r ; bs�b0s

�58�

the following di�erential operators are employed for C

and K

d

db
� @

@b
� @

@T

dT

db

d2

dbrdbs
� @ 2

@br@bs
� @ 2

@br@Ta

dTa

dbs
� @ 2

@bs@Ta

dTa

dbr

� @ 2

@Ta@Tb

dTa

dbr

dTb

dbs
� @

@Ta

d2Ta

dbrdbs
�59�

Similarly, as for the continuous system the zeroth-

order nodal temperatures T0 are to be solved iter-
atively.
We rewrite Eq. (49) in the residual form as

R�T � � C0 ÇT0 �K0T0 ÿ Q0 � 0 �60�
The nodal random temperature ®eld can now be

expressed as (cf. Eq. (45))

T � T0 � T,rDbr � 1

2
T,rsDbrDbs �61�

By the de®nition of the expectations for any nodal

temperatures T�t� at any time instant and cross-covari-
ances for T�t1� and T�t2� we have, respectively (cf. Eqs.
(36) and (42))

E�T � �
��1
ÿ1

Tf �b� db

Cov
ÿ
T�t1 �, T�t2 �

� ���1
ÿ1

�
T�t1 � ÿ E

�
T�t1 �

�	�
T�t2 � ÿ E

�
T�t2 �

�	
f �b� db

�62�

in which f �b� is the probability density (nodal) func-

tion. Similar relationships hold for the nodal tempera-
ture velocities ÇT:
Introducing Eq. (61) into (62), observing in the

resulting equation that the terms involving the ®rst
variation of Dbr vanish (cf. Eq. (39)), and using Eq.
(53) yields the second-order accurate spatial expec-
tations for the nodal temperatures at any time instant

as

E�T � � T0 � 1

2
T�2� �63�

and the ®rst-order accurate space-time cross-covari-
ances as

Cov
�
T�t1 �, T�t2 �

� � T,r�t1 �T,s�t2 �Srs �64�

5. Solution procedure

The problem considered can be solved using the
method of solution proposed by Comini et al. [10] and

Morgan et al. [11]. In our example, we use the method
proposed by Rolph and Bathe [14].
The essence of the procedure is to construct the

latent heat ¯ow vector using the enthalpy the system.
The enthalpy for any time step n� 1 (i.e. time t� Dt�
can be written in an alternating manner as

H �
�
O

 �t�Dt
0

~c _T dt� s

�t�Dt
0

_L dt

!
dO �65�

Typical relationships between the enthalpy and tem-
perature are shown schematically in Fig. 1. The ¯ow

due to latent heat (index l) at node k at time step n� 1
is denoted by Q

�kÿ1�
l, k and by T

�i �
k is the i the approxi-

mation of the total temperature increment at node k
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and Q�l, k is L=Dt integrated over the contributory
nodal volume. Consider Euler backward integration

scheme. At the beginning of each time step i = 1,
n�1Q

�0�
l, k � 0:

For pure substances �DTf � 0�, Tf is phase change

temperature (Fig. 2), if temperature is outside phase
change

nTk < Tf and n�1T �i�k < Tf �66�

or

nTk > Tf and n�1T �i�k > Tf �67�

then

�T
�i�
k � T

�i�
k

DQ�i�l, k � 0 �68�

If temperature passes through phase change tempera-
ture nTk � Tf or

nTk < Tf and n�1T �i�k rTf or nTk > Tf and

t�DtT �i�k RTf

then

�T
�i�
k � Tf ÿ nTk �69�

DQ�i�l, k � ÿ
�
Ok

1

Dt
~cn�1

�
T
�i�
k ÿ �T

�i�
k

�
dO �70�

X
DQ�i�l, k �2Q�l, k �71�

where `+' is for solidi®cation, and `ÿ' for melting.

n�1T �i�k � nTk � �T
�i�
k �72�

n�1Q
�i�
l, k � t�DtQ

�iÿ1�
l, k � DQ�i�l, k �73�

If DTf > 0 and temperature is outside phase change
temperature interval

nTk < Tf and n�1T �i�k < Tf or

nTk > Tf � DTf and n�1T �i�k > Tf � DTf

�74�

then

�T
�i�
k � T

�i�
k

DQ�i�l, k � 0 �75�

If temperature passes through phase change tempera-
ture interval

TfRnTkRTf � DTf �76�

Fig. 1. Relation between enthalpy and temperature �Tl � Ts � Tf �:
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or

nTk < Tf and t�DtT �i�k rTf �77�

or

nTk > Tf � DTf and n�1T �i�k RTf � DTf �78�

then

DQ�i�l, k � ÿ
�
Ok

1

Dt
~c�
�
T
�i�
k ÿ Tf � tTk

�
dO �79�

where

~c� � 1

�DTf=L� �
ÿ
1=n�1 ~c

� �80�

�T �i�k � Tf ÿ nTk �
"X

DQ�i�l, k
Q�l, k

#
DTf �81�

X
DQ�i�l, k �2Q�l, k �82�

6. Sample analysis

Solidi®cation of a semi-in®nite slab of liquid is con-

sidered initially at zero temperature (Fig. 3). At time
t � 0 the temperature of the surface of the liquid is
reduced to ÿ458F. The similar deterministic problem

was considered earlier by Comini et al. [10], Morgan et

al. [11] and Ichikawa and Kikucki [12,13]. The prob-
abilistic data used in computations:

. random material properties:

E�k� � 1:08

E� ~c� � 1:0

E�L� � 70:26

E�Tf � � ÿ0:1

Fig. 2. Relation between enthalpy and temperature �Tl > Ts, DTf > 0�:

Fig. 3. Finite element model for solidi®cation problem con-

sidered.
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. cross-correlation functions

m�kr, ks � � exp
�ÿ abs�x i ÿ xj �=x _k

�
m� ~cr, ~cs � � exp

�ÿ abs�x i ÿ x j �=x ~c

�
m�Lr, Ls � � exp

�ÿ abs�xi ÿ x j �=xL
�

. coe�cient of variations

xk � xc � xL � 1

. correlation lengths

ark � ar~c � arL � 0:15

Results of the analysis are given in Table 1 where

assumed time step is Dt � 1 s.

7. Concluding remarks

The derivations presented in the paper show that
heat ¯ow with phase change in systems with spatially
random parameters can be e�ectively carried out using

the stochastic ®nite element technique.
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Table 1

Expectations of temperature and temperature deviations at x � 1

Time step 1 2 3 4

Expectation of temperature ÿ1.23 ÿ11.21 ÿ17.35 ÿ20.01
Standard deviation 0.296 2.842 4.457 5.175
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